» »

Получение биогаза из свежей травы. Получение и расчет биогаза

06.10.2023

Вопрос получения метана интересен тем владельцам частных хозяйств, кто занимается разведением птицы или свиней, а также держит крупнорогатый скот. Как правило, в таких хозяйствах вырабатывается значительное количество органических отходов жизнедеятельности животных, они-то и могут принести немалую пользу, став источником дешевого топлива. Цель данного материала – рассказать, как добыть биогаз в домашних условиях, используя эти самые отходы.

Общие сведения о биогазе

Получаемый из различного навоза и птичьего помета домашний биогаз большей частью состоит из метана. Там его от 50 до 80% в зависимости от того, чьи отходы жизнедеятельности использовались для производства. Того самого метана, что горит в наших плитах и котлах, и за который мы платим порой немалые деньги согласно показаниям счетчика.

Чтобы дать представление о количестве горючего, что теоретически можно добыть при содержании животных дома или на даче, представим таблицу с данными о выходе биогаза и содержании в нем чистого метана:

Как можно понять из таблицы, для эффективного производства газа из коровьего навоза и силосных отходов понадобится довольно большое количество сырья. Выгоднее добывать горючее из навоза свиней и помета индюков.

Оставшаяся доля веществ (25-45%), из которых состоит домашний биогаз, приходится на углекислый газ (до 43%) и сероводород (1%). Также в составе горючего присутствует азот, аммиак и кислород, но в незначительных количествах. Кстати, именно благодаря выделению сероводорода и аммиака навозная куча издает такой знакомый «приятный» запах. Что касается энергетического содержания, то 1 м3 метана теоретически может выделить при сжигании до 25 МДж (6.95 кВт) тепловой энергии. Удельная теплота сгорания биогаза зависит от доли метана в его составе.

Для справки. На практике проверено, что для обогрева утепленного дома, находящегося в средней полосе, потребно около 45 м3 биологического горючего на 1 м2 площади за отопительный сезон.

Природой устроено так, что биогаз из навоза образуется самопроизвольно и независимо от того, хотим его получать или нет. Навозная куча перегнивает в течение года – полутора, просто находясь на открытом воздухе и даже при отрицательной температуре. Все это время она выделяет биогаз, но только в небольших количествах, поскольку процесс растянут во времени. Причиной служат сотни видов микроорганизмов, находящихся в экскрементах животных. То есть, для начала газовыделения ничего не нужно, оно будет происходить самостоятельно. А вот для оптимизации процесса и его ускорения потребуется специальное оборудование, о чем пойдет речь далее.

Технология получения биогаза

Суть эффективного производства - ускорение природного процесса разложения органического сырья. Для этого находящимся в нем бактериям необходимо создать наилучшие условия для размножения и переработки отходов. И первое условие – поместить сырье в закрытую емкость – реактор, иначе - генератор биогаза. Отходы измельчаются и перемешиваются в реакторе с расчетным количеством чистой воды до получения исходного субстрата.

Примечание. Чистая вода необходима для того, чтобы в субстрат не попали вещества, пагубно влияющие на жизнедеятельность бактерий. Как следствие, процесс брожения может сильно замедлиться.

Промышленная установка по производству биогаза оборудована подогревом субстрата, средствами перемешивания и контроля над кислотностью среды. Перемешивание выполняется с целью удалить с поверхности твердую корку, что возникает во время брожения и мешает выделению биогаза. Длительность технологического процесса – не менее 15 дней, за это время степень разложения достигает 25%. Считается, что максимальный выход горючего происходит до 33% разложения биомассы.

Технологией предусматривается ежедневное обновление субстрата, так обеспечивается интенсивное получение газа из навоза, в промышленных установках оно исчисляется сотнями кубических метров в день. Часть отработанной массы в размере порядка 5% от общего объема удаляется из реактора, а на ее место загружается столько же свежего биологического сырья. Отработанный материал используется в качестве органического удобрения полей.

Схема биогазовой установки

Получая биогаз в домашних условиях, невозможно создать столь благоприятные условия для микроорганизмов, как в промышленном производстве. И в первую очередь это утверждение касается организации подогрева генератора. Как известно, это требует затрат энергии, что ведет к существенному удорожанию себестоимости горючего. Контролировать соблюдение слабощелочной среды, присущей процессу брожения, вполне возможно. Только как ее корректировать в случае отклонений? Снова затраты.

Владельцам частных хозяйств, желающим добывать биогаз своими руками, рекомендуется изготовить реактор простой конструкции из доступных материалов, а потом его модернизировать в силу своих возможностей. Что надо сделать:

  • герметично закрывающуюся емкость объемом не менее 1 м3. Разные баки и бочки малых размеров тоже подойдут, но горючего из них будет выделяться мало из-за недостаточного количества сырья. Такие объемы производства вас не устроят;
  • организовывая производство биогаза в домашних условиях, вы вряд ли станете делать подогрев емкости, а вот утеплить ее нужно обязательно. Другой вариант – заглубить реактор в землю, выполнив тепловую изоляцию верхней части;
  • установить в реакторе ручную мешалку любой конструкции, выведя рукоятку через верхнюю крышку. Узел прохода ручки должен быть герметичным;
  • предусмотреть патрубки для подачи и выгрузки субстрата, а также для отбора биогаза.

Ниже показана схема биогазовой установки, размещенной ниже уровня земли:

1 – генератор горючего (емкость из металла, пластика или бетона); 2 — бункер для заливки субстрата; 3 – технический люк; 4 – сосуд, играющий роль водяного затвора; 5 – патрубок выгрузки отработанных отходов; 6 – патрубок отбора биогаза.

Как получить биогаз в домашних условиях?

Операция первая – измельчение отходов до фракции, чей размер не более 10 мм. Так гораздо легче приготовить субстрат, да и бактериям будет проще перерабатывать сырье. Получившаяся масса тщательно перемешивается с водой, ее количество – около 0.7 л на 1 кг органики. Как уже сказано выше, воду следует использовать только чистую. Затем субстратом заполняется биогазовая установка, сделанная своими руками, после чего реактор герметично закрывается.

Несколько раз в течении дня надо наведываться к емкости, чтобы перемешать содержимое. На 5-й день можно проверять наличие газа, и буде он появится, периодически откачивать его компрессором в баллон. Если этого вовремя не делать, то давление внутри реактора возрастет и брожение замедлится, а то и остановится вовсе. Спустя 15 дней надо производить выгрузку части субстрата и добавление такого же количество нового. Подробности можно узнать, просмотрев видео:

Заключение

Вполне вероятно, что простейшая установка для получения биогаза не обеспечит все ваши потребности. Но, учитывая нынешнюю стоимость энергоресурсов, это уже будет немалым подспорьем в домашнем хозяйстве, ведь за исходное сырье вам платить не приходится. Со временем, плотно занимаясь производством, вы сможете уловить все особенности и провести необходимое усовершенствование установки.

Газ широко применяется как для промышленности, в том числе и химической (например, сырье для получения пластмасс) так и в быту. В бытовых условиях газ используют для отопления жилых частных и многоквартирных домов, приготовления пищи, нагревания воды, как топливо для машин и т.д.

В экологическом отношении газ один из самых чистых видов топлива. Если сравнить с другими видами топлива наименьшее количество выбросов вредных веществ.

Но если мы говорим о газе то автоматически подразумеваем природный газ добываемый из земных недр.

Как то однажды я на ткнулся в газете на статью в которой рассказывалось как один дед собрал не хитрую установку и получает газ из навоза. Меня эта тема очень заинтересовала. И я хотел бы рассказать об этой альтернативе природному газу – это биогаз. Я считаю, что эта тема довольно интересна и полезна простым людям и особенно фермерам.

На подворье любого крестьянского хозяйства можно использовать не только энергию ветра, солнца, но и биогаза.

Биогаз — газообразное топливо, продукт анаэробного микробиологического разложения органических веществ. Технология получения газа экологически чистый, безотходный способ переработки, утилизации и обеззараживания разнообразных органических отходов растительного и животного происхождения.

Сырьем для получения биогаза является обыкновенный навоз, листья, трава, в общем, любой органический мусор: ботва, пищевые отходы, опавшие листья.

Получаемый газ — метан это результат жизнедеятельности метановых бактерий. Из метана — его еще называют болотным или рудничным газом на 90-98 % состоит природный газ, который используется в быту.

Установка для получения газа очень проста в изготовлении. Нам нужна основная емкость, ее можно сварить самому либо использовать какую — то уже готовую это может быть все что угодно. По бокам емкости нужно установить теплоизоляцию, для использования установки в холодное время года. Сверху делаем пару люков. От одного из них присоединяем трубки для отвода газа. Для интенсивного процесса брожения и выделения газа, смесь нужно периодически перемешивать. Поэтому нужно установить приспособление для перемешивания. Далее газ нужно собрать и складировать либо использовать по назначению. Для сбора газа можно использовать обычную автомобильную камеру, а далее если имеется компрессор сжимать и закачивать в баллоны.

Принцип работы довольно прост: через один люк загружается навоз. Внутри происходит разложение этой биомассы специальными метановыми бактериями. Чтобы процесс проходил интенсивнее, содержимое нужно перемешивать и желательно подогревать. Для обогрева можно установить внутри трубки по которым должна циркулировать горячая вода. Метан выделившийся в результатом жизнедеятельности бактерий по трубкам попадает в автомобильные камеры, а когда его накапливается достаточное количество, при помощи компрессора сжимаем и закачиваем в баллоны.

В теплую погоду или при использовании искусственного подогрева установка может давать достаточно большое количество газа, около 8 м 3 /сут.

Так же газ возможно получать из бытовых отходов со свалок, но проблемой являются химикаты используемые в быту.

Метановые бактерии находятся в кишечники животных и, следовательно, в навозе. Но для того чтобы они начали работать нужно ограничить их взаимодействие с кислородом, так как он угнетает их жизнедеятельность. Именно поэтому нужно создавать специальные установки, чтобы бактерии не контактировали с воздухом.

В получаемом биогазе концентрация метана немногониже чем вприродном, следовательно при е го сжигании он будет давать немного меньше тепла. При сжигании 1 м 3 природного газа выделяется 7-7,5 Гкал, то при биогаза — 6-6.5 Гкал.

Этот газ подходит как для отопления (у нас еще есть общие сведения об отоплении ) так и для использования в бытовых плитах. Себестоимость биогаза низкая, а в некоторых случаях вообще практически равна нулю, если все сделано из подручных материалов и вы держите, например корову.

Отходы от производства газа- это биогумус — органическое удобрении в котором в процессе гниения без доступа кислорода перегнивает все от семян сорняков, а остаются только полезные микроэлементы необходимые растениям.

За границей даже есть методы создания искусственных месторождений газа. Выглядит это следующим образом. Поскольку большая доля в выбрасываемом бытовом мусоре это органика, которая может гнить и давать биогаз. Чтобы газ начал выделятся нужно лишить органику взаимодействия своздухом. Поэтому отходы закатывают слоями, а верхний слой делают из газоводонепроницаемого материала, например глины. Потом бурят скважины и добывают газ как из природных месторождений. И одновременно решается несколько проблем, это утилизация отходов и получение энергии.

При каких условиях получается биогаз?

Условия получения и энергетическая ценность биогаза

Для того что бы собрать малогабаритную установку необходимо знать из какого сырья и по какой технологии можно получить биогаз.

Газ получается в процессе разложения (ферментации) органических веществ без доступа воздуха (анаэробный процесс): помет домашних животных, солома, ботва, опавшие листья и др. органические отходы, образующиеся в индивидуальном хозяйстве. Отсюда следует, что биогаз можно получать из любых хозяйственно бытовых отходов которые могут разлагаться и бродить в жидком или влажном состоянии.

Процесс разложения (ферментации) проходит в две фазы:

  1. Разложение биомассы (гидротация);
  2. Газификация (выделение биогаза).

Эти процессы происходят в ферментаторе (анаэробной биогазовой установке).

Ил полученный после разложения в биогазовых установках, повышает плодородие почв и урожайность повышается 10-50%. Таким образом, получается ценнейшее удобрение.

Биогаз состоит из смеси газов:

  • метан-55-75%;
  • углекислый газ-23-33%;
  • сероводород-7%.

Метановое брожение — это сложный процесс брожения органических веществ — бактериальный процесс. Главное условие протекания этого процесса, наличие тепла.

В процессе разложения биомассы образуется тепло, которого достаточно для протекания процесса, что бы сохранить это тепло ферментатор необходимо теплоизолировать. При понижении температуры в ферментаторе снижается интенсивность газовыделения, так как микробиологические процессы в органической массе замедляются. Поэтому надежная теплоизоляция биогазовой установки (биоферментатора) одно из наиболее важных условий ее нормальной работы. При загрузке навоза в ферменттатор необходимо смешивать с горячей водой с температурой 35-40 о С. Это поможет обеспечить необходимый режим его работы.

При догрузке потери тепла нужно сводить к минимуму Инженерная помощь по биогазу

Для лучшего обогрева ферментатора можно использовать «тепличный эффекта». Для этого над куполом устанавливают деревянный или легкий металлический каркас и покрывают полиэтиленовой пленкой. Наилучшие результаты достигаются при температуре сырья, которое сбраживается 30-32°С и влажности 90-95 %. В районах средней и северной полосы часть получаемого газа необходимо расходовать в холодные периоды года на дополнительный подогрев сбраживаемой массы, что усложняет конструкцию биогазовых установок.

Установки несложно соорудить в индивидуальных хозяйствах в виде специальных ферментаторов для сбраживания биомассы. Основным органическим сырьем для загрузки в ферментатор является навоз.

При первой загрузке навоза КРС процесс ферментации должен быть не менее 20 сут, свиного не менее 30 сут. Газа получить можно больше при загрузке смеси из различных компонентов по сравнению с загрузкой, например навоза КРС.

Например, смесь навоза КРС и птичьего помета при переработке дает до 70% метана в биогазе.

После того как процесс сбраживания стабилизировался, нужно загружать сырье каждый день не более 10% от количества перерабатываемой в ферментаторе массы.

При ферментации помимо производства газа происходит обеззараживание органических веществ. Органические отходы избавляются от патогенной микрофлоры, дезодорация выделяемых неприятных запахов.

Образующийся ил нужно периодически выгружать из ферментатора, его используют как удобрение.

При первом наполнении биогазовой установки отбираемый газ не горит, это происходит, потому что первый полученный газ содержит большое количество углекислого газа, около 60%. Поэтому его необходимо выпустить в атмосферу, и через 1-3 дня работа биогазовой установки стабилизируется.

Таблица №1- количество газа получаемого получаемого за сутки при ферментации экскриментов одного животного

По количеству выделяемой энергии 1 м 3 биогаза эквивалентен:

  • 1,5 кг каменного угля;
  • 0,6 кг керосина;
  • 2 кВт/ч электроэнергии;
  • 3,5 кг дров;
  • 12 кг навозных брикетов.

Конструкция малогабаритных биогазовых установок

Рисунок 1 — Схема простейшей биогазовой установоки с пирамидальным куполом: 1 — яма для навоза; 2 — канавка — гидрозатвор; 3 — колокол для сбора газа; 4, 5 — патрубок для отвода газа; 6 — манометр.

Согласно приведенным на рисунке 1, размерам оборудуют яму 1 и купол 3. Яму облицовывают железобетонными плитами толщиной 10 см, которые штукатурят цементным раствором и для герметичности покрывают смолой. Из кровельного железа сваривают колокол высотой 3 м, в верхней части которого будет скапливаться биогаз. Для зашиты от коррозии колокол периодически красят двумя слоями масляной краски. Еще лучше предварительно покрыть колокол изнутри свинцовым суриком. В верхней части колокола устанавливают патруоок 4 для отвода биогаза и манометр 5 для измерения его давления. Газа отводящий патрубок 6 можно изготовить из резинового шланга, пластмассовой или металлической трубы.

Вокруг ямы — ферментатора устраивают бетонную канавку — гидрозатвор 2. наполненную водой, в которую погружают нижний бортик колокола на 0.5 м.

Рисунок 2 — Устройство для отвода конденсата: 1 — трубопровод для отвода газа; 2 — U-образная труба для конденсата; 3 — конденсат.

Подавать газ, например к кухонной плите можно по металлическим, пластмассовым или резиновым трубкам. Чтобы зимой из-за замерзания конденсирующейся воды трубки не размерзались, применяют несложное устройство показанное на рисунке 2: U — образную трубку 2 присоединяют к трубопроводу 1 в самой нижней точке. Высота ее свободной части должна быть больше давления биогаза (в мм. вод. ст.). Конденсат 3 сливается через свободный конец трубки, при этом не будет утечки газа.

Рисунок 3 — Схема простейшей биогазовой установоки с коническим куполом: 1 — яма для навоза; 2 — купол (колокол); 3 — расширенная часть патрубка; 4 — труба для отвода газа; 5 — канавка — гидрозатвор.

В установке приведенной на рисунке 3 яму 1 диаметром 4 мм глубиной 2 м обкладывают внутри кровельным железом, листы которого плотно сваривают. Внутреннюю поверхность сварного резервуара покрывают смолой для антикоррозионной зашиты. С наружной стороны верхней кромки резервуара из бетона устраивают кольцевую канавку 5 глубиной до 1 м, которую заливают водой. В нее свободно устанавливают вертикальную часть купола 2, закрывающую резервуар. Таким образом, канавка с залитой в нее водой служит гидрозатвором. Биогаз собирается в верхней части купола, откуда через выпускной патрубок 3 и далее по трубопроводу 4 (или шлангу) подается к месту использования.

В круглый резервуар 1 загружается около 12 куб.м органической массы (желательно свежего навоза), которая заливается жидкой фракцией навоза (мочой) без добавления воды. Через неделю после заполнения ферментатор начинает работать. В данной установке емкость ферментатора составляет 12 куб,м, что дает возможность сооружать ее для 2-3 семей, дома которых расположены недалеко. Такую установку можно построить на подворье, если семья выращивает, например бычков или содержит несколько коров.


Рисунок 4 — Схемы вариантов простейших установок: 1 — подача органических отходов; 2 — емкость для органических отходов; 3 — место сбора газа под куполом; 4 — патрубок для отвода газа; 5 — отвод ила; 6 — манометр; 7 — купол из полиэтиленовой пленки; 8 — водяной затвор и ; 9 — груз; 10 — цельносклеенный полиэтиленовый мешок.

Конструктивно-технологические схемы простейших малогабаритных установок приведены на рисунке 4. Стрелками обозначены технологические перемещения исходной органической массы, газа, ила. Конструктивно купол может быть жестким или изготовленным из полиэтиленовой пленки. Жесткий купол можно выполнить с длинной цилиндрической частью для глубокого погружения в перерабатываемую массу плавающимрисунок 4, г, или вставленным в гидравлический затвор рисунок 4, д. Купол из пленки можно вставить в гидрозатвор рисунок 4, е, или изготовить в виде цельносклеенного большого мешка рисунок 4, ж. В последнем исполнении на мешок из пленки укладывают груз 9 чтобы мешок не очень раздувался, а также для образования под пленкой достаточного давления.

Газ, который собирается под куполом или пленкой, поступает по газопроводу к месту использования. Чтобы избежать взрыва газа на выпускном патрубке можно установить отрегулированный на определенное давление клапан. Однако, опасность взрыва газа маловероятна, поскольку при значительном повышении давления газа под куполом последний будет приподнятый в гидравлическом затворе на критическую высоту и опрокинется, выпустив при этом газ.

Выработка биогаза может быть снижена из-за того, что на поверхности органического сырья в ферментаторе при ее брожении образуется корка. Для того, чтобы она не препятствовала выходу газа, ее разбивают, перемешивая массу в ферментаторе. Перемешивать можно не вручную, а путем присоединения снизу к куполу металлической вилки. Купол поднимается в гидравлическом затворе на определенную высоту при накоплении газа и опускается по мере его использования.

Благодаря систематическо.му движению купола сверху-вниз, соединенные с куполом вилки будут разрушать корку.

Высокая влажность и наличие сероводорода (до 0,5 %) способствует повышенной коррозии металлических частей биогазовых установок. Поэтому состояние всех металлических элементов ферментатора регулярно контролируют и места повреждении тщательно защищают, лучше всего свинцовым суриком в один или два слоя, а затем красят в два слоя любой масляной краской.

Рисунок 5. Схема биогазовой установки с подогревом: 1 — ферментатор; 2 — деревянный щит; 3 — заливная горловина; 4 — метантанк; 5 — мешалка; 6 — патрубок для отбора биогаза; 7 — теплоизоляционная прослойка; 8 — решетка; 9 — сливной кран для переработанной массы; 10 — канал для подачи воздуха; 11 — воздуходувка.

Биогазовая установка с подогревом сбраживаемой массы теплом, выделяемым при разложении навоза, в аэробном ферментаторе, приведена на рисунке 5. включает метантанк — цилиндрическую металлическую емкость с заливной горловиной 3. сливным краном 9. механической мешалкой 5 и патрубком 6 отбора биогаза.

Ферментатор 1 можно сделать прямоугольным и3 деревянных материалов. Для выгрузки обработанного навоза соковые стенки выполнены съемными. Пол ферментатора — решетчатый, через технологический канал 10 воздух продувают из воздуходувки 11. Сверху ферментатор закрывают деревянными шитами 2. Чтобы уменьшить потери тепла, стенки и днище изготавливают с теплоизоляционной прослойкой 7.

Работает установка так. В метантанк 4 через головину 3 заливают предварительно подготовленный жидкий навоз влажностью 88-92 %, уровень жидкости определяют по нижней части заливной горловины. Аэробный ферментатор 1 через верхнюю открывающуюся часть заполняют подстилочным навозом или смесью навоза с рыхлым сухим органическим наполнителем (солома, опилки) влажностью 65-69 %. При подаче воздуха через технологический канал в ферментаторе начинает разлагаться органическая масса и выделяется тепло. Его достаточно для подогрева содержимого метантанка. В результате происходит выделение биогаза. Он накапливается в верхней части метантанка. Через патрубок 6 его используют для бытовых нужд. В процессе сбраживания навоз в метантенке перемешивается мешалкой 5.

Такая установка окупится уже за год только за счет утилизации отходов в личном хозяйстве. Приблизительные значения по расходу биогаза приведены в таблице 2.

Таблица №2 – приблизительные значения по расходу биогаза

Примечание: установка может работать в любой климатической зоне.

Рисунок 6 — Схема индивидуальной биогазовой установки ИБГУ-1: 1 — заливная горловина; 2 — .мешалка; 3 — патрубок, для отбора газа; 4 — теплоизоляционная прослойка; 5 — патрубок с краном для выгрузки переработанной массы; 6 — термометр.

Индивидуальная биогазовая установка (ИБГУ-1) для семьи, имеющей от 2 до 6 коров или 20-60 свиней, или 100-300 голов птицы (рисунок 6). Установка ежесуточно может перерабатывать от 100 до 300 кг навоза и производит 100-300 кг экологически чистых органических удобрений и 3-12 м 3 биогаза.

Владельцам частных домов, расположенных в регионах с ограниченным доступом к традиционным видам топлива, следует обязательно обратить свое внимание на современные биогазовые установки. Подобные агрегаты позволяют получать биогаз из разнообразных органических отходов и использовать его для личных нужд, в том числе и обогрева жилых помещений.

Газ можно получать практически из любой биомассы – отходов животноводческой промышленности, пищевого производства, сельского хозяйства, листвы и пр. При этом соорудить подобную установку можно своими руками.

Для получения биогаза подходит как однородное сырье, так и смеси различной биомассы. Биогазовая установка – это объемное герметичное сооружение, оснащенное приспособлениями для подачи сырья, подогрева биомассы, перемешивания компонентов, отвода полученного биогаза в газовый коллектор и, конечно же, защиты конструкции.

В реакторе под воздействием анаэробных бактерий осуществляется быстрое разложение биомассы. В процессе брожения органического сырья выделяется биогаз. Примерно 70% состава такого газа представлено метаном, оставшаяся часть – углекислым газом.

Биогаз характеризуется прекрасными показателями теплотворной способности, у него нет выраженного запаха и цвета. По своим свойствам биогаз практически ни в чем не уступает более традиционному природному газу.

В развитых странах используют дополнительные установки для очистки биогаза от углекислого газа. При желании вы сможете купить такую же установку и получать чистый биометан.

Биогазовые установки на силосе. 1 Силосные ямы. 2 Система загрузки биомассы. 3 Реактор. 4 Реактор дображивания. 5 Субстратер. 6 Система отопления. 7 Силовая установка. 8 Система автоматики и контроля. 9 Система газопроводов

Сравнение биогаза с более традиционными видами топлива

В среднем одна корова или другое животное весом в полтонны способно за сутки произвести количество навоза, достаточное для получения примерно 1,5 м3 биогаза. Суточный навоз одной средней свиньи можно переработать в 0,2 м3 биогаза, а кролика или курицы – в 0,01-0,02 м3 топлива.

Для сравнения: 1 м3 биогаза из навоза дает примерно столько же тепловой энергии, как 3,5 кг дров, 1-2 кг угля, 9-10 кВт/ч электричества.

Простейший рецепт смеси для получения биогаза включает в себя следующие компоненты:

  • коровий навоз – порядка 1500 кг;
  • сгнившая листва либо другие органические отходы – 3500 кг;
  • вода – 65-75% от общей массы предыдущих компонентов. Предварительно воду нужно подогреть примерно до 35 градусов.

Такого количества биомассы будет достаточно для получения биогаза на полгода эксплуатации с умеренным расходом. В среднем биогаз начинает выделяться уже через 1,5-2 недели после загрузки смеси в установку.

Газ можно использовать для обогрева дома и разнообразных хозяйственных и бытовых построек.

Конструкция типичной биогазовой установки

Основными компонентами полноценной биогазовой системы являются:

  • реактор;
  • система подачи перегноя;
  • мешалки;
  • автоматизированн ая система подогрева биомассы;
  • газгольдер;
  • сепаратор;
  • защитная часть.

Бытовая установка будет иметь несколько упрощенную конструкцию, однако, для полноты восприятия вам предлагается ознакомиться с описанием всех перечисленных элементов.

Реактор

Данная часть установки обычно собирается из нержавейки либо бетона. Внешне реактор похож на большую герметичную емкость, сверху которой установлен купол, обычно имеющий шаровидную форму.

В настоящее время наибольшей популярностью пользуются реакторы с разборной конструкции, выполненные с применением инновационных технологий. Такой реактор можно с легкостью собрать своими руками с минимальными временными затратами. В случае необходимости он настолько же легко разбирается и перевозится в другое место.

Сталь удобна тем, что в ней можно без лишних усилий создавать отверстия для подключения других элементов системы. Бетон же превосходит сталь по показателям прочности и долговечности.

Система подачи биомассы

Эта часть установки включает в свой состав бункер для приема отходов, подводящий трубопровод для подачи воды и шнековый насос, предназначенный для отправки перегноя в реактор.

Для загрузки сухого компонента в бункер используется фронтальный погрузчик. В домашних условиях с этой задачей можно справиться без погрузчика, используя различные подручные средства, к примеру, лопаты.

В бункере происходит увлажнение смеси до полужидкого состояния. После достижения нужного уровня увлажнения шнек переводит полужидкую массу в нижний отсек реактора.

Мешалки

Брожение перегноя в реакторе должно происходить равномерно. Это одно из главнейших условий обеспечения интенсивного выделения биогаза из смеси. Именно для достижения максимально равномерного процесса брожения смеси конструкция типичной биогазовой установки включает в свой состав мешалки с электроприводами.

Существуют мешалки погружного и наклонного типа. Погружные механизмы могут опускаться в биомассу на требуемую глубину для обеспечения интенсивного и равномерного перемешивания субстрата. Обычно такие мешалки размещаются на мачте.

Монтаж наклонных мешалок выполняется на боковых поверхностях реактора. За вращение винта в ферментаторе отвечает электродвигатель.

Автоматизированн ая система подогрева

Для успешного получения биогаза температура внутри системы должна поддерживаться на уровне +35-+40 градусов. Для этого в конструкцию включаются автоматизированн ые системы подогрева.

Источником тепла в данном случае выступает водогрейный котел, в отдельных ситуациях применяются электрические отопительные агрегаты.

В этом элементе конструкции собирается биогаз. Чаще всего газгольдер размещают на крыше реактора.

Производство современных газгольдеров обычно выполняется с применением поливинилхлорида – материала, устойчивого к солнечному свету и разнообразным неблагоприятным природным явлениям.

В некоторых ситуациях вместо обычного газгольдера применяют специальные мешки. Также эти приспособления позволяют временно увеличить объем запаса полученного биогаза.

Для изготовления газгольдер-мешко в применяется специальный поливинилхлорид с эластичными свойствами, способный раздуваться по мере увеличения объема биогаза.

Эта часть системы отвечает за сушку отработанного перегноя и получение при необходимости высококачественн ых удобрений.

Простейший сепаратор состоит из шнека и сепараторной камеры. Камера выполнена в форме сита. Это позволяет разделять биомассу на твердый компонент и жидкую часть.

Осушенный перегной отправляется в отгрузочный отсек. Жидкую часть система направляет обратно в приемную камеру. Здесь жидкость применяется для увлажнения нового исходного сырья.

Простейшая биогазовая установка своими руками

Бытовая биогазовая установка будет иметь несколько упрощенную конструкцию, но к ее изготовлению следует подходить с максимальной ответственностью.

Первый шаг. Выройте яму. По своей сути биогазовая установка является большой ямой со специальной отделкой. Самой ответственной и одновременно с этим сложной частью изготовления рассматриваемой системы является правильная подготовка стенок биореактора и его основания.

Яма должна быть герметичной. Укрепите основание и стенки с помощью пластика либо бетона. Вместо этого вы можете приобрести готовые полимерные кольца с глухим дном. Такие приспособления позволяют обеспечить необходимую герметичность системы. Материал будет сохранять свои изначальные характеристики в течение долгих лет, а при необходимости вы сможете с легкостью заменить старое кольцо новым.

Второй шаг. Оборудуйте систему газового дренажа. Это избавит вас от необходимости покупки и установки мешалок, благодаря чему затраты времени и денежных средств на сборку установки существенно сократятся.

Простейший вариант системы газового дренажа – это вертикально закрепленные канализационные трубы из поливинилхлорида со множеством отверстий по корпусу.

Трубы подбирайте такой длины, чтобы их верхние края несколько возвышались над верхним уровнем загруженного перегноя.

Третий шаг . Накройте внешний слой субстрата пленочной изоляцией. Благодаря пленке будут создаваться условия для скапливания биогаза под куполом в условиях незначительного избыточного давления.

Четвертый шаг. Установите купол и смонтируйте газоотводящую трубу в его наивысшей точке.

Потребление газа должно быть регулярным. В противном случае купол над емкостью с биомассой может попросту взорваться. В летнее время газ образуется более интенсивно, чем в зимний период. Для решения последней проблемы купите и установите подходящие обогреватели.

Порядок и условия успешного использования биогазовой установки

Таким образом, самостоятельно собрать простую биогазовую установку несложно. Однако для ее успешной эксплуатации вы должны запомнить и соблюдать несколько простых правил.

Одно из важнейших требований – в загружаемой органической массе не должно присутствовать никаких веществ, способных оказать отрицательное воздействие на жизнедеятельност ь анаэробных микроорганизмов. К числу запрещенных включений относятся разного рода растворители, антибактериальны е препараты и прочие подобные вещества.

Ряд неорганических веществ также способен привести к ухудшению жизнедеятельност и бактерий. Ввиду этого запрещается, к примеру, разбавлять перегной водой, оставшейся после стирки одежды либо мытья машины.

Помните: биогазовая установка является потенциально взрывоопасным агрегатом, поэтому соблюдайте все положения техники безопасности, актуальной для эксплуатации любого газового оборудования.

Таким образом, даже навоз и в принципе практически все, от чего ранее вы старались всеми силами избавляться, может пригодиться в хозяйстве. Нужно лишь правильно соорудить домашнюю биогазовую установку, и уже очень скоро в вашем доме будет тепло. Следуйте полученным рекомендациям, и вам больше не придется тратить колоссальные суммы на отопление.

Удачной работы!

Биогаз – газ получаемый в результате ферментации (сбраживания) органических веществ (например: соломы; сорняков; животного и человеческого кала; мусора; органических отходов сточных бытовых и промышленных вод, и т.д.) в анаэробных условиях. В производстве биогаза участвуют различные типы микроорганизмов с разнообразным количеством функций катаболизма.

Состав биогаза.

Биогаз более чем на половину состоит из метана (CH 4). Метан составляет примерно 60% биогаза. Кроме того, в биогазе содержится диоксид углерода (CO 2) около 35 %, а также другие газы, такие как водяной пар, сероводород, монооксид углерода, азот и прочие. Биогаз, полученный в различных условиях, различен в своем составе. Так биогаз из человеческих экскрементов, навоза, отходов убоя содержит до 70% метана, а из растительных остатков, как правило, около 55% метана.

Микробиология биогаза.

Биогазовое брожение в зависимости от микробного вида участвующих бактерий можно разделить на три этапа:

Первый называется началом брожения бактерий. Различные органические бактерии, размножаясь, выделяют внеклеточные ферменты, основная роль которых заключается в разрушении сложных органических соединений с гидролизным образованием простых веществ. Например, полисахариды в моносахариды; белок в пептиды или аминокислоты; жиры в глицерин и жирные кислоты.

Второй этап называется водородным. Образуется водород в результате деятельности уксуснокислых бактерий. Их основная роль заключается в бактериальном разложении уксусной кислоты с образованием двуокиси углерода и водорода.

Третий этап называется метаногеным. В нем участвует тип бактерий, известных как метаногены. Их роль состоит в использовании уксусной кислоты, водорода и диоксида углерода с образованием метана.

Классификация и характеристика сырья для ферментации биогаза.

Почти все природные органические материалы могут быть использованы в качестве сырья для ферментации биогаза. Основным сырьем для производства биогаза являются сточные воды: канализации; пищевой, фармацевтической и химической промышленности. В сельских районах это отходы, образующиеся при сборе урожая. Из-за различий в происхождении различен и процесс формирования, химический состав и структура биогаза.

Источники сырья для биогаза в зависимости от происхождения:

1.Сельскохозяйственное сырье.

Это сырье можно разделить на сырье с большим содержание азота и на сырье с большим содержанием углерода.

Сырье с большим содержанием азота:

человеческие фекалии, навоз скота, птичий помет. Соотношение углерод-азот составляет 25:1 или менее. Такое сырое было полностью переварено желудочно-кишечным трактом человека или животного. Как правило, содержит большое количество низкомолекулярных соединений. Вода в таком сырье частично преобразовалась и вошла в состав низкомолекулярных соединений. Это сырье характеризуется легким и быстрым анаэробным разложением на биогаз. А также богатым выходом метана.

Сырье с большим содержанием углерода:

солома и шелуха. Соотношение углерод-азот составляет 40:1. Имеет высокое содержание высокомолекулярных соединений: целлюлозы, гемицеллюлозы, пектина, лигнина, растительных восков. Анаэробного разложения происходит довольно медленно. Для того чтобы увеличить скорость производства газа такие материалы обычно требуют предварительной обработки перед брожением.

2. Городские органические водные отходы.

Включает отходы жизнедеятельности человека, канализацию, органические отходы, органические промышленные сточные воды, осадки в виде шлама.

3. Водные растения.

Включают водяной гиацинт, другие водные растения и водоросли. Расчетная плановая загрузка производственных мощностей характеризуются большой зависимостью от солнечной энергии. Имеют высокую доходность. Технологическая организация требует более аккуратный подход. Анаэробное разложение происходит легко. Метановый цикл короткий. Особенность такого сырья заключается в том, что без предварительной обработки оно всплывает в реакторе. Для того, чтобы это устранить сырье должна быть немного подсушено или предварительно компостировано в течении 2 дней.

Источники сырья для биогаза в зависимости от влажности:

1.Твердое сырье:

солома, органические отходы с относительно высоким содержанием сухого вещества. Их переработка происходит по методу сухой ферментации. Трудности возникают с удалением из ректора большого количества твердых отложений. Общее количество используемого сырья можно представить в виде суммы содержания сухих веществ (TS) и летучих веществ (VS). Летучие вещества можно преобразовать в метан. Для расчета летучих веществ образец сырья загружают в муфельную печь с температурой 530-570°С.

2. Жидкое сырье:

свежие фекалии, навоз, помет. Содержат около 20% сухого вещества. Дополнительно требуют добавления воды в количестве 10% для смешивания с твердым сырьем при сухой ферментации.

3. Органические отходы средней влажности:

барды спиртового производства, сточные воды целлюлозных заводов и др. Такое сырье содержит различное количество белков, жиров и углеводов, является хорошим сырьем для производства биогаза. Для этого сырья используют устройства по типу UASB (Upflow Anaerobic Sludge Blanket - восходящий анаэробный процесс).

Таблица1. Сведения о дебите (скорости образования) биогаза для условий: 1)температура сбраживания 30°С; 2)периодическое сбраживание

Наименование сбраживаемых отходов Средняя скорость потока биогаза во время нормального производства газа (m 3 /m 3 /d) Выход биогаза, m 3 /Kg/TS Дебит биогаза (в % от общего объема производства биогаза)
0-15 d 25-45 d 45-75 d 75-135 d
Сухой навоз 0,20 0,12 11 33,8 20,9 34,3
Вода химической промышленности 0,40 0,16 83 17 0 0
Рогульник (чилим, водяной орех) 0,38 0,20 23 45 32 0
Водяной салат 0,40 0,20 23 62 15 0
Свиной навоз 0,30 0,22 20 31,8 26 22,2
Сухая трава 0,20 0,21 13 11 43 33
Солома 0,35 0,23 9 50 16 25
Человеческие экскременты 0,53 0,31 45 22 27,3 5,7

Расчет процесса метанового брожения (ферментации).

Общие принципы инженерных расчетов ферментации базируются на увеличении загрузки органическим сырьем и сокращении продолжительности метанового цикла.

Расчет сырья на цикл.

Загрузка сырья характеризуется: Массовой долей TS (%), массовой долей VS (%), концентрацией COD (COD - chemical oxygen demand, что в переводе означает ХПК – химический показатель кислорода) (Kg/m 3). Концентрация зависит от типа ферментационных устройств. Например, современные промышленные реакторы для сточных вод - UASB (восходящий анаэробный процесс). Для твердого сырья используют AF (анаэробные фильтры) - обычно концентрация менее 1%. Промышленные отходы в качестве сырья для биогаза чаще всего имеют большую концентрацию и нуждаются в разбавлении.

Расчет скорости загрузки.

Для определения суточного количества загрузки реактора: концентрация COD (Kg/m 3 ·d), TS (Kg/m 3 ·d), VS (Kg/m 3 ·d). Эти показатели являются важным показателями оценки эффективности биогаза. Необходимо стремится к органичению нагрузки и в то же время при этом иметь высокий уровень объема получения газа.

Расчет отношения объема реактора к выходу газа.

Этот показатель является важным показателем оценки эффективности реактора. Измеряется в Kg/m 3 ·d.

Выход биогаза на единицу массы брожения.

Этот показатель характеризует текущее состояние производства биогаза. Например, объем газосборника 3 m 3 . Ежедневно подается 10 Kg/TS. Выход биогаза составляет 3/10 = 0,3 (m 3 /Kg/TS). В зависимости от ситуации можно использовать теоретический выход газа или фактический выход газа.

Теоретический выход биогаза определяется по формулам:

Производство метана (Е):

Е = 0.37A + 0.49B + 1.04C.

Производство углекислого газа (D):

D = 0.37A + 0.49B + 0.36C. Где А- содержание углеводов на грамм материала брожения, B- белка, C- содержание жира

Гидравлический объем.

Для повышения эффективности необходимо снижение срока ферментации. В определенной степени имеется связь с потерей ферментирующих микроорганизмов. В настоящее время некоторые эффективные реакторы имеют срок ферментации 12 дней и даже меньше. Гидравлический объем рассчитывается путем подсчета объема ежедневной загрузки сырья со дня, когда началась загрузка сырья и зависит от срока пребывания в реакторе. Например, планируется ферментация при 35°С, концентрация подачи сырья 8% (общее количество TS), суточный объем подачи 50 m 3 , период ферментации в реакторе 20 дней. Гидравлический объем составит: 50·20 = 100 m 3 .

Удаление органических загрязнений.

Производство биогаза, как и любое биохимическое производство, имеет отходы. Отходы биохимического производства могут наносить ущерб экологии в случаях бесконтрольной утилизации отходов. Например, попадая в реку по соседству. Современные крупные биогазовые установки продуцируют тысячи и даже десятки тысяч килограмм отходов в сутки. Качественный состав и пути утилизации отходов крупных биогазовых установок контролируются лабораториями предприятий и государственной экологической службой. Малые фермерские биогазовые установки не имеют такого контроля по двум причинам: 1) так как мало отходов, то вреда окружающей среде будет мало. 2) Проведение качественного анализа отходов требует специфического лабораторного оборудования и узко специализированного персонала. Этого у мелких фермеров нет, а государственные структуры справедливо считают такой контроль не целесообразным.

Показателем уровня загрязненности отходов биогазовых реакторов является ХПК (химический показатель кислорода).

Используют следующую математическую зависимость: ХПК органической скорости загрузки Kg/m 3 ·d= загрузочная концентрация ХПК (Kg/m 3) / гидравлический срок хранения (d).

Дебит газа в объеме реактора (kg/(m 3 ·d)) = выход биогаза (m 3 /kg) / ХПК органической скорости загрузки kg/(m 3 ·d).

Достоинства биогазовых энергетических установок:

твердые и жидкие отходы имеют специфический запах отпугивающий мух и грызунов;

возможность производить полезный конечный продукт - метан, который является чистым и удобным топливом;

в процессе брожения семена сорняков и некоторые из возбудителей погибают;

в процессе ферментации азот, фосфор, калий и другие ингредиенты удобрения почти полностью сохраняются, часть органического азота преобразуется в аммиачный азот, а это увеличивает его ценность;

ферментационный остаток может быть использован в качестве корма для животных;

для биогазового брожения не требуется применение кислорода из воздуха;

анаэробный шлам может храниться в течение нескольких месяцев без добавления питательных веществ, а затем при загрузке первичного сырья брожение может быстро начаться снова.

Недостатки биогазовых энергетических установок:

сложное устройство и требует относительно больших инвестиций в строительство;

требуется высокий уровень строительства, управления и обслуживания;

первоначальное анаэробное распространение брожения происходит медленно.

Особенности процесса метанового брожения и управление процессом:

1.Температура получения биогаза.

Температура для получения биогаза может быть в относительно широком диапазоне температур 4~65°С. С увеличением температуры скорость получения биогаза возрастает, но не линейно. Температура 40~55°С является переходной зоной жизнедеятельности различных микроорганизмов: термофильных и мезофильных бактерии. Самый высокий темп анаэробного брожения происходит в узком диапазоне температур 50~55°С. При температуре брожения 10°С за 90 дней дебит газа составляет 59%, но этот же дебит при температуре брожения 30°С происходит за 27 дней.

Внезапное изменение температуры будет иметь значительное влияние на производство биогаза. Проектом биогазовой установки обязательно должно предусматриваться контролирование такого параметра как температура. Температурные изменения более чем на 5°С, значительно снижают производительность биогазового реактора. Например, если температура в биогазовом реакторе была продолжительное время 35°С, а затем неожиданно снизилась до 20°С, то производство биогазового реактора почти полностью остановится.

2. Прививочный материал.

Чтобы завершить метановое брожение, как правило, требуется определенное количество и тип микроорганизмов. Богатый метановыми микробами осадок называется прививочный. Биогазовое брожение широко распространено в природе и точно также широко распространены места с прививочным материалом. Это: канализационные шламы, иловые отложения, донные осадки навозных ям, различные осадки сточных вод, пищеварительные остатки и т.д. Из-за обильного органического вещества и хороших анаэробных условий в них образуются богатые микробные сообщества.

Посев, добавленный впервые в новый биогазовый реактор может значительно снизить период стагнации. В новом биогазовом реакторе необходимо вручную вносить подкормку прививочным материалом. При использовании промышленных отходов в качестве сырья этому уделяется особое внимание.

3. Анаэробная среда.

Анаэробность среды определяется степенью анаэробности. Обычно окислительно-восстановительный потенциал принято обозначать величиной Eh. В анаэробных условиях Eh имеет отрицательное значение. Для анаэробных метановых бактерий Eh лежит в пределах -300 ~ -350mV. Некоторые бактерии продуцирующие факультативные кислоты способны жить нормальной жизнью при Eh -100 ~ + 100 мВ.

В целях обеспечения анаэробных условий должно обеспечиваться построение плотно закрытых биогазовых реакторов, обеспечивающих водонепроницаемость и отсутствие утечек. Для крупных промышленных биогазовых реакторов величина Eh всегда контролируется. Для мелких фермерских биогазовых реакторов возникает проблема контроля этой величины из-за необходимости закупки дорогостоящего и сложного оборудования.

4. Контроль кислотности среды (рН) в биогазовом реакторе.

Метаногены необходим диапазон рН в очень узком диапазоне. В среднем рН=7. Брожение происходит в диапазоне рН от 6,8 до 7,5. Контроль за величиной кислотности рН доступен для мелких биогазовых реакторов. Для этого многие фермеры применяют одноразовые лакмусовые индикаторные бумажные полоски. На крупных предприятиях часто используют электронные приборы контроля рН. При нормальных обстоятельствах, баланс метанового брожения носит вид естественного процесса, как правило, без регулировки рН. Только в отдельных случаях бесхозяйственности появляются массовые скопления летучих кислот, снижение рН.

Мерами по смягчению последствий повышенной кислотности рН являются:

(1) Заменить частично среду в биогазовом реакторе, и тем самым разбавить содержание летучих кислот. Этим увеличится рН.

(2) Внести золу или аммиак для повышения рН.

(3) Довести рН известью. Эта мера особенно эффективна для случаев сверхвысоких содержаний кислоты.

5. Перемешивание среды в биогазовом реакторе.

В обычном бродильном чане в результате брожения среда обычно делится на четыре слоя: верхняя корка, надосадочный слой, активный слой и слой осадка.

Цель перемешивания:

1) переселение активных бактерий на новую порцию первичного сырья, увеличение поверхности контакта микробов и сырья для ускорения темпов получения биогаза, повышение эффективности использования сырья.

2) избежание образования толстого слоя корки, создающего сопротивление для выхода биогаза. К перемешиванию особенно требовательно такое сырьё как: солома, сорняки, листья и т.д. В толстом слое корки создаются условия для накопления кислоты, что является не допустимым.

Способы перемешивания:

1) механическое перемешивание колесами различного типа, установленными внутри рабочего пространства биогазового реактора.

2) перемешивание биогазом, отбираемым из верхней части биореактора и подающимся в нижнюю часть с избыточным давлением.

3) перемешивание циркулирующим гидравлическим насосом.

6. Соотношение углерода к азоту.

Эффективному брожению способствует только оптимальное соотношение питательных веществ. Основным показателем является соотношение углерода к азоту (C: N). Оптимальное соотношение 25:1. Многочисленными исследованиями доказано, что пределы оптимального соотношения составляют 20-30:1, а производство биогаза значительно снижается при соотношении 35:1. Экспериментальными исследованиями выявлено, что биогазовое брожение возможно при соотношении углерода к азоту 6:1.

7. Давление.

Метановые бактерии могут приспосабливаться к большим гидростатическим давлениям (около 40 метров и более). Но они очень чувствительны к изменениям давления и из-за этого возникает необходимость в стабильном давлении (отсутствии резких перепадов давления). Значительные изменения давления могут происходить в случаях: значительного возрастания потребления биогаза, относительно быстрой и большой загрузки биореактора первичным сырьём или аналогичной разгрузки реактора от отложений (чистке).

Способы стабилизации давления:

2) подачу свежего первичного сырья и чистку производить одновременно и с одинаковой скоростью разрядки;

3) установка плавающих крышек на биогазовый реактор позволяет сохранять относительно стабильное давление.

8. Активаторы и ингибиторы.

Некоторые вещества после добавления небольшого количества улучшают производительность биогазового реактора, такие вещества, известные как активаторы. В то время как другие вещества добавленые в небольших количествах приводят к значительному сдерживанию процессов в биогазовом реакторе, такие вещества, называют ингибиторами.

Известны многие типы активаторов, в том числе некоторые ферменты, неорганические соли, органические и неорганические вещества. Например, добавление определенного количества фермента целлюлазы значительно облегчает производство биогаза. Добавка 5 mg/Kg высших оксидов (R 2 О 5) может увеличить добычу газа на 17%. Дебит биогаза для первичного сырья из соломы и подобных ей можно значительно увеличить добавкой аммония гидрокарбоната (NH 4 HCO 3). Активаторами также являются активированный уголь или торф. Подача в биореактор водорода может резко увеличить производство метана.

Ингибиторы в основном относится к некоторым из соединений ионов металлов, солей, фунгицидов.

Классификация процессов брожения.

Метановая ферментация является строго анаэробной ферментацией. Процессы брожения делятся на следующие типы:

Классификация по температуре брожения.

Может быть разделена на "естественную" температуры брожения (ферментации переменной температуры), в этом случае температура брожения около 35°С и процесс с высокой температурой брожения (около 53°С).

Классификация по дифференциальности.

По дифференциальности ферментации можно разделить на одноступенчатое брожение, двухступенчатое брожение и многоступенчатое брожение.

1) Одноступенчатое брожение.

Относится к наиболее общему типу брожения. Это относится к аппаратам, в которых одновременно происходит продуцирование кислот и метана. Одноступенчатое брожения может быть менее эффективно по показателю БПК (Биологическому Потреблению Кислорода) чем двух- и многоступенчатое брожение.

2) Двухступенчатое брожение.

Основано на отдельном брожении кислот и метаногенных микроорганизмов. Эти два типа микробов имеют разную физиологию и потребность в питании, существуют значительные различия в росте, обменных характеристиках и других аспектах. Двухэтапное брожения может значительно повысить дебит биогаза и разложение летучих жирных кислот, сократить цикл ферментации, принести значительную экономию эксплуатационных расходов, эффективно удалить органические загрязнения из отходов.

3) Многоступенчатое брожение.

Применяется для первичного сырья богатого целлюлозой в следующей последовательности:

(1) Производят гидролиз целлюлозного материала в присутствии кислот и щелочей. Происходит образование глюкозы.

(2) Вносят прививочный материал. Обычно это активный осадок или сточные воды биогазового реактора.

(3) Создают подходящие условия для продуцирования кислотных бактерий (продуцирующих летучие кислоты): pH=5,7 (но не более 6,0), Eh=-240mV, температура 22°С. На этой стадии образуются такие летучие кислоты: уксусная, пропионовая, масляная, изомасляная.

(4) Создают подходящие условия для продуцирования метановых бактерий: pH=7,4-7,5, Eh=-330mV, температура 36-37°С

Классификация по переодичности.

Технология брожение классифицируется на переодическое брожение, непрерывное брожение, полунепрерывное брожение.

1) Периодическое брожение.

В биогазовый реактор едино разово загружают сырье и прививочный материал и подвергают его брожению. Такой способ применяют когда имеются трудности и неудобства загрузки первичного сырья, а также выгрузки отходов. Например, не измельченная солома или крупногабаритные брикеты органических отходов.

2) Непрерывное брожение.

К нему относятся случаи, когда планово несколько раз в день в биоректор загружают сырье и удаляют ферментационные стоки.

3) Полунепрерывное брожение.

Это относится к биогазовым реакторам, для которых нормальным считается время от времени не равными количествами добавлять различное первичное сырье. Такая технологическая схема наиболее часто используется мелкими фермерскими хозяйствами Китая и связана с особенностями ведения сельхоз. работ. Биогазовые реакторы полунепрерывного брожения могут иметь различные отличия в конструкциях. Ниже рассмотрены эти конструкции.

Схема №1. Биогазовый реактор с неподвижной крышкой.

Особенности конструкции: комбинирование бродильной камеры и хранилища биогаза в одном сооружении: в нижней части бродит сырье; в верхней части храниться биогаз.

Принцип действия:

Биогаз выходит из жидкости и собирается под крышкой биогазового реактора в его куполе. Давление биогаза уравновешивается весом жидкости. Чем больше давление газа, тем больше жидкости покидает бродильную камеру. Чем меньше давление газа, тем больше жидкости поступает в бродильную камеру. В процессе работы биогазового реактора внутри него всегда есть жидкость и газ. Но в разных соотношениях.

Схема№2. Биогазовый реактор с плавающей крышкой.

Схема№3. Биогазовый реактор с неподвижной крышкой и внешним газгольдером.

Особенности конструкции: 1) взамен плавающей крышки имеет отдельно построенный газгольдер; 2) давление биогаза на выходе постоянно.

Достоинства Схемы №3: 1) идеально подходит для работы биогазовых горелок, строго требующих определенный номинал давления; 2) при малой активности брожения в биогазовом реакторе есть возможность обеспечить стабильное и высокое давление биогаза у потребителя.

Руководство по строительству бытового биогазового реактора.

GB/T 4750-2002 Бытовые биогазовые реакторы.

GB/T 4751-2002 Приемка по качеству бытовых биогазовых реакторов.

GB/T 4752-2002 Правила строительства бытовых биогазовых реакторов.

GB 175 -1999 Портландцемент, портландцемент обыкновенный.

GB 134-1999 Шлакопортландцемент, цемент из вулканического туфа и цемент из зольной пыли.

GB 50203-1998 Строительство каменной кладки и приемка.

JGJ52-1992 Стандарт качества обыкновенного бетона из песка. Методы испытаний.

JGJ53- 1992 Стандарт качества обыкновенного бетона из щебня или гравия. Методы испытаний.

JGJ81 -1985 Механические характеристики обыкновенного бетона. Метод испытаний.

JGJ/T 23-1992 Техническая спецификация для испытания прочности бетона на сжатие методом отскока.

JGJ70 -90 Строительный раствор. Метод испытания на основные характеристики.

GB 5101-1998 Кирпичи.

GB 50164-92 Контроль качества бетона.

Воздухонепроницаемость.

Конструкция биогазового реактора обеспечивает внутреннее давление 8000 (или 4000 Pa). Степень утечки после 24 ч менее 3%.

Единица производства биогаза на объем реактора.

Для удовлетворительных условий производства биогаза считается нормальным, когда на кубический метр объема реактора производится 0,20-0,40 m 3 биогаза.

Нормальный объем газового хранилища составляет 50% суточного производства биогаза.

Коэффициент запаса прочности не менее K=2,65.

Нормальный срок эксплуатации не менее 20 лет.

Живая нагрузка 2 kN/m 2 .

Значение несущей способности конструкции фундамента не менее 50 kPa.

Газовые резервуары рассчитаны на давление не более 8000 Pa, а с плавающей крышкой на давление не более 4000 Pa.

Максимальный предел давления для бассейна не более 12000 Pa.

Минимальная толщина арочного свода реактора не менее 250 mm.

Максимальная загрузка реактора составляет 90% его объема.

Конструкцией реактора предусматривается наличие под крышкой реактора места для флотации газа составляющее 50% суточного производства биогаза.

Объем реактора составляет 6 m 3 , дебит газа 0,20 m 3 /m 3 /d.

Возможна постройка реакторов с объемом 4 m 3 , 8 m 3 , 10 m 3 по этим чертежам. Для этого необходимо использовать поправочные размерные величины, указанные в таблице на чертежах.

Подготовка к строительству биогазового реактора.

Выбор типа биогазового реактора зависит от количества и характеристик сбраживаемого сырья. Кроме того выбор зависит от местных гидрогеологических и климатических условий и уровня строительной техники.

Бытовой биогазовый реактор должен располагаться вблизи туалетов и помещений со скотом на удалении не более 25 метров. Место расположения биогазового реактора должно быть с подветренной и солнечной стороны на твердом грунте с низким уровнем подземных вод.

Для выбора дизайна биогазового реактора используйте таблицы расхода строительных материалов приведенные ниже.

Таблица3. Шкала материалов для биогазового реактора из сборных бетонных панелей

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,828 2,148 2,508 2,956
Цемент, kg 523 614 717 845
Песок, m 3 0,725 0,852 0,995 1,172
Гравий, m 3 1,579 1,856 2,167 2,553
Объем, m 3 0,393 0,489 0,551 0,658
Цемент, kg 158 197 222 265
Песок, m 3 0,371 0,461 0,519 0,620
Цементная паста Цемент, kg 78 93 103 120
Общее количество материала Цемент, kg 759 904 1042 1230
Песок, m 3 1,096 1,313 1,514 1,792
Гравий, m 3 1,579 1,856 2,167 2,553

Таблица4. Шкала материалов для биогазового реактора из сборных железобетонных панелей

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,540 1,840 2,104 2,384
Цемент, kg 471 561 691 789
Песок, m 3 0,863 0,990 1,120 1,260
Гравий, m 3 1,413 1,690 1,900 2,170
Оштукатуривание сборного корпуса Объем, m 3 0,393 0,489 0,551 0,658
Цемент, kg 158 197 222 265
Песок, m 3 0,371 0,461 0,519 0,620
Цементная паста Цемент, kg 78 93 103 120
Общее количество материала Цемент, kg 707 851 1016 1174
Песок, m 3 1,234 1,451 1,639 1,880
Гравий, m 3 1,413 1,690 1,900 2,170
Стальные материалы Стальной прут диаметр 12 mm, kg 14 18,98 20,98 23,00
Стальная арматура диаметр 6,5 mm, kg 10 13,55 14,00 15,00

Таблица5. Шкала материалов для биогазового реактора из монолитного бетона

Объем реактора, m 3
4 6 8 10
Объем, m 3 1,257 1,635 2,017 2,239
Цемент, kg 350 455 561 623
Песок, m 3 0,622 0,809 0,997 1,107
Гравий, m 3 0,959 1,250 1,510 1,710
Оштукатуривание сборного корпуса Объем, m 3 0,277 0,347 0,400 0,508
Цемент, kg 113 142 163 208
Песок, m 3 0,259 0,324 0,374 0,475
Цементная паста Цемент, kg 6 7 9 11
Общее количество материала Цемент, kg 469 604 733 842
Песок, m 3 0,881 1,133 1,371 1,582
Гравий, m 3 0,959 1,250 1,540 1,710

Таблица6. Условные обозначения на чертежах.

Описание Обозначение на чертежах
Материалы:
Штруба (траншея в грунте)
Символы:
Ссылка на чертеж детали. Верхняя цифра указывает на номер детали. Нижняя цифра указывает на номер чертежа с подробным описанием детали. Если вместо нижней цифры указан знак «-», то это указывает, что подробное описание детали представлено на этом чертеже.
Разрез детали. Жирными линиями указана плоскость разреза и направление взгляда, а цифрами указан идентификационный номер разреза.
Стрелкой указан радиус. Цифры после буквы R обозначают значение радиуса.
Общепринятые:
Соответственно большая полуось и короткая ось эллипсоида
Длина

Конструкции биогазовых реакторов.

Особенности:

Тип конструктивной особенности основного бассейна.

Дно имеет уклон от впускного окна к выпускному окну. Это обеспечивает образование постоянство движущегося потока. На чертежах №№ 1-9 указаны три типа конструкций биогазового реактора: тип А, тип В, тип С.

Биогазовый реактор тип А: Устроен наиболее просто. Удаление жидкой субстанции предусматривается только через выпускное окно силой давления биогаза внутри бродильной камеры.

Биогазовый реактор тип В: Основной бассейн оснащен вертикальной трубой в центре, через которую в процессе эксплуатации можно производить подачу или удаление жидкой субстанции в зависимости от такой необходимости. Кроме этого для формирования потока субстанции через вертикальную трубу этот тип биогазового реактора имеет отражающую (дефлекторную) перегородку на дне основного бассейна.

Биогазовый реактор тип С: Имеет сходную конструкцию с реактором типа В. Однако, оснащен ручным поршневым насосом простой конструкции, установленным в центральной вертикальной трубе, а также другие отражающие перегородки на дне основного бассейна. Эти конструктивные особенности позволяют эффективно контролировать параметры основных технологических процессов в основном бассейне за счет простоты экспресс проб. А также использовать биогазовый реактор в качестве донора биогазовых бактерий. В реакторе этого типа более полно происходит диффузия (перемешивание) субстрата, что в свою очередь увеличивает выход биогаза.

Характеристики сбраживания:

Процесс заключается в отборе прививочного материала; подготовке первичного сырья (доводки по плотности водой, доводки кислотности, внесении прививочного материала); сбраживании (контроль смешивания субстрата и температуры).

В качестве ферментационного материала используются человеческие фекалии, навоз домашнего скота, птичий помет. При непрерывном процессе сбраживания создаются относительно стабильные условия эффективной работы биогазового реактора.

Принципы проектирования.

Соответствие «триединой» системе (биогаз, туалет, хлев). Биогазовый реактор представляет собой вертикальный цилиндрический резервуар. Высота цилиндрической части H=1 m. Верхняя часть резервуара имеет арочный свод. Соотношение высоты свода к диаметру цилиндрической части f 1 /D=1/5. Дно имеет наклон от впускного окна к выпускному окну. Угол наклона 5 градусов.

Конструкция резервуара обеспечивает удовлетворительные условия брожения. Движение субстрата происходит самотеком. Система работает при полной загрузке резервуара и сама себя контролирует по времени пребывания сырья за счет увеличения производства биогаза. Биогазовые реакторы типов В и С имеют дополнительные устройства для обработки субстрата.
Загрузка резервуара сырьем может быть не полной. Это снижает газовую производительность без ущерба эффективности.
Низкая стоимость, простота управления, широкое народное распространение.

Описание строительных материалов.

Материал стен, дна, свода биогазового реактора – бетон.

Детали квадратного сечения, такие как загрузочный канал, могут быть сделаны из кирпича. Бетонные конструкции могут быть выполнены заливкой бетонной смеси, но могут быть выполнены из сборных бетонных элементов (такие как: крышка впускного окна, садок для бактерий, труба по центру). Садок для бактерий круглый в сечении и состоит из битой яичной скорлупы, помещенной в оплетку.

Последовательность строительных операций.

Метод опалубочной заливки заключается в следующем. На земле делается разметка контура будущего биогазового реактора. Извлекается грунт. Сначала заливается дно. На дно устанавливается опалубка для заливки бетона по кольцу. Заливаются стенки с применением опалубки и затем арочный свод. Для опалубки может быть использована сталь, дерево или кирпич. Заливку производят симметрично и для прочности применяют трамбовочные устройства. Излишки текучего бетона убирают шпателем.

Строительные чертежи.

Строительство производится по чертежам №№1-9.

Чертеж 1. Биогазовый реактор 6 m 3 . Тип А:

Чертеж 2. Биогазовый реактор 6 m 3 . Тип А:

Строительство биогазовых реакторов из сборных железобетонных плит является более совершенной технологией строительства. Эта технология более совершенна за счет простоты реализации соблюдения точности размеров, снижения сроков и затрат на строительство. Главной особенностью строительства является то, что основные элементы реактора (арочный свод, стены, каналы, крышки) изготавливаются вдали от места установки, затем они транспортируются на место установки и собираются на месте в большом котловане. При сборке такого реактора основное внимание уделяется соответствие точности установки по горизонтали и вертикали, а также плотности стыковых соединений.

Чертеж 13. Биогазовый реактор 6 m 3 . Детали биогазового реактора из железобетонных плит:

Чертеж 14. Биогазовый реактор 6 m 3 . Элементы сборки биогазового реактора:

Чертеж 15. Биогазовый реактор 6 m 3 . Элементы сборки железобетонного реактора:

Технология производства биогаза . Современные животноводческие комплексы обеспечивают получение высоких производственных показателей. Применяемые технологические решения позволяют полностью соблюдать требования действующих санитарно-гигиенических норм в помещениях самих комплексов.

Однако большие количества жидкого навоза, сконцентрированные в одном месте, создают значительные проблемы для экологии прилегающих к комплексу территорий. Например, свежий свиной навоз и помёт относятся к отходам, имеющим 3-й класс опасности. Экологические вопросы находятся на контроле надзирающих органов, требования законодательства по этим вопросам постоянно ужесточаются.

Биокомплекс предлагает комплексное решение по вопросам утилизации жидкого навоза, которое включает ускоренную переработку в современных биогазовых установках (БГУ). В процессе переработки, в ускоренном режиме протекают естественные процессы разложения органики с выделением газа включающего: метан, СО2, серу, и т.д. Только получаемый газ не выделяется в атмосферу, вызывая парниковый эффект, а направляется в специальные газогенераторные (когенерационные) установки, которые вырабатывают электрическую и тепловую энергию.

Биогаз - горючий газ , образующийся при анаэробном метановом сбраживании биомассы и состоящий преимущественно из метана (55-75%), двуокиси углерода (25-45%) и примесей сероводорода, аммиака, оксидов азота и других (менее 1%).

Разложение биомассы происходит в результате химико-физических процессов и симбиотической жизнедеятельности 3-х основных групп бактерий, при этом продукты метаболизма одних групп бактерий являются продуктами питания других групп, в определённой последовательности.

Первая группа - гидролизные бактерии, вторая – кислотообразующие, третья - метанобразующие.

В качестве сырья для производства биогаза могут использоваться как органические агропромышленные или бытовые отходы, так и растительное сырьё.

Наиболее распространёнными видами отходов АПК, используемыми для производства биогаза, являются:

  • навоз свиней и КРС, помёт птицы;
  • остатки с кормового стола комплексов КРС;
  • ботва овощных культур;
  • некондиционный урожай злаковых и овощных культур, сахарной свёклы, кукурузы;
  • жом и меласса;
  • мучка, дробина, мелкое зерно, зародыши;
  • дробина пивная, солодовые ростки, белковый отстой;
  • отходы крахмало-паточного производства;
  • выжимки фруктовые и овощные;
  • сыворотка;
  • и пр.

Источник сырья

Вид сырья

Количество сырья в год, м3 (тн.)

Количество биогаза, м3

1 дойная корова Бесподстилочный жидкий навоз
1 свинья на откорме Бесподстилочный жидкий навоз
1 бычок на откорме Подстилочный твёрдый навоз
1 лошадь Подстилочный твёрдый навоз
100 кур Сухой помёт
1 га пашни Свежий силос кукурузы
1 га пашни Сахарная свёкла
1 га пашни Свежий силос из зерновых культур
1 га пашни Свежий силос из травы

Количество субстратов (видов отходов), используемых для производства биогаза в пределах одной биогазовой установки (БГУ), может варьироваться от одного до десяти и более.

Биогазовые проекты в агропромышленном секторе могут быть созданы по одному из следующих вариантов:

  • производство биогаза из отходов отдельного предприятия (например, навоза животноводческой фермы, жома сахарного завода, барды спиртового завода);
  • производство биогаза на базе отходов разных предприятий, с привязкой проекта к отдельному предприятию либо отдельно расположенной централизованной БГУ;
  • производство биогаза с преимущественным использованием энергетических растений на отдельно расположенных БГУ.

Наиболее распространённым способом энергетического использования биогаза является сжигание в газопоршневых двигателях в составе мини-ТЭЦ, с производством электроэнергии и тепла.

Существуют различные варианты технологических схем биогазовых станций — в зависимости от типов и количества видов применяемых субстратов. Использование предварительной подготовки, в ряде случаев, позволяет добиться увеличения скорости и степени распада сырья в биореакторах, а, следовательно, увеличения общего выхода биогаза. В случае применения нескольких субстратов, отличающихся свойствами, например, жидких и твёрдых отходов, их накопление, предварительная подготовка (разделение на фракции, измельчение, подогрев, гомогенизация, биохимическая или биологическая обработка, и пр.) проводится отдельно, после чего они либо смешиваются перед подачей в биореакторы, либо подаются раздельными потоками.

Основными структурными элементами схемы типичной биогазовой установки являются:

  • система приёма и предварительной подготовки субстратов;
  • система транспортировки субстратов в пределах установки;
  • биореакторы (ферментеры) с системой перемешивания;
  • система обогрева биореакторов;
  • система отвода и очистки биогаза от примесей сероводорода и влаги;
  • накопительные ёмкости сброженной массы и биогаза;
  • система программного контроля и автоматизации технологических процессов.

Технологические схемы БГУ бывают различными в зависимости от вида и числа перерабатываемых субстратов, от вида и качества конечных целевых продуктов, от того или иного используемого «ноу-хау» компании поставщика технологического решения, и ряда других факторов. Наиболее распространёнными на сегодняшний день являются схемы с одноступенчатым сбраживанием нескольких видов субстратов, одним из которых обычно является навоз.

С развитием биогазовых технологий применяемые технические решения усложняются в сторону двухступенчатых схем, что в ряде случаев обосновано технологической необходимостью эффективной переработки отдельных видов субстратов и повышением общей эффективности использования рабочего объема биореакторов.

Особенностью производства биогаза является то, что он может вырабатываться метановыми бактериями только из абсолютно сухих органических веществ. Поэтому задачей первого этапа производства, является создание смеси субстрата, который имеет повышенное содержание органических веществ, и в то же время может перекачиваться насосами. Это субстрат с содержанием сухих веществ 10-12%. Решение достигается путём выделения излишней влаги с помощью шнековых сепараторов.

Жидкий навоз поступает из производственных помещений в резервуар, гомогенизируется с помощью погружной мешалки, и погружным насосом подаётся в цех разделения на шнековые сепараторы. Жидкая фракция накапливается в отдельном резервуаре. Твёрдая фракция загружается в устройство подачи твёрдого сырья.

В соответствии с графиком загрузки субстрата в ферментёр, по разработанной программе периодически включается насос, подающий жидкую фракцию в ферментёр и одновременно включается загрузчик твёрдого сырья. В качестве варианта, жидкая фракция может подаваться в загрузчик твёрдого сырья, имеющего функцию перемешивания, и затем уже готовая смесь подаётся в ферментёр по разработанной программе загрузки.. Включения бывают непродолжительными. Это сделано, чтобы не допустить излишнего поступления органического субстрата в ферментёр, поскольку это может нарушить баланс веществ и вызовет дестабилизацию процесса в ферментёре. Одновременно включаются также насосы, перекачивающие дигестат из ферментёра в дображиватель и из дображивателя в накопитель дигестата (лагуну), чтобы не допустить переполнения ферментёра и дображивателя.

Находящиеся в ферментёре и дображивателе массы дигестата, перемешиваются для обеспечения равномерного распределения бактерий по всему объёму ёмкостей. Для перемешивания используются тихоходные мешалки специальной конструкции.

В процессе нахождения субстрата в ферментёре, бактериями выделяется до 80% всего биогаза, вырабатываемого БГУ. В дображивателе выделяется оставшаяся часть биогаза.

Важную роль в обеспечении стабильного количества выделяемого биогаза играет температура жидкости внутри ферментёра и дображивателя. Как правило, процесс протекает в мезофильном режиме с температурой 41-43ᴼС. Поддержание стабильной температуры достигается применением специальных трубчатых нагревателей внутри ферментёров и дображивателей, а также надёжной теплоизоляцией стен и трубопроводов. Биогаз, выходящий из дигестата, имеет повышенное содержание серы. Очистка биогаза от серы производится с помощью специальных бактерий, заселяющих поверхность утеплителя, уложенного на деревянный балочный свод внутри ферментёров и дображивателей.

Накопление биогаза осуществляется в газгольдере, который образуется между поверхностью дигестата и эластичным высокопрочным материалом, покрывающим ферментёр и дображиватель сверху. Материал имеет способность сильно растягиваться (без уменьшения прочности), что накоплении биогаза значительно увеличивает ёмкость газгольдера. Для предохранения переполнения газгольдера и разрыва материала, имеется предохранительный клапан.

Далее биогаз поступает в когенерационную установку. Когенерационная установка (КГУ) является блоком, в котором осуществляется выработка электрической энергии генераторами, привод которых осуществляют газопоршневые двигатели, работающие на биогазе. Когенераторы работающие на биогазе, имеют конструктивные отличия от обычных газогенераторных двигателей, поскольку биогаз является сильно обеднённым топливом. Вырабатываемая генераторами электрическая энергия, обеспечивает питание электрооборудования самой БГУ, а все сверх этого отпускается близлежащим потребителям. Энергия жидкости, идущей на охлаждение когенераторов и является вырабатываемой тепловой энергией за минусом потерь в бойлерных устройствах. Вырабатываемая тепловая энергия, частично идёт на обогрев ферментёров и дображивателей, а оставшаяся часть – также направляется в близ лежащим потребителям. поступает в

Можно установить дополнительное оборудование для очистки биогаза до уровня природного газа, однако это дорогостоящее оборудование и его применяют, только если целью БГУ является не производство тепловой и электрической энергии, а производство топлива для газопоршневых двигателей. Апробированными и наиболее часто применяемыми технологиями очистки биогаза являются водная абсорбция, адсорбция на носителе под давлением, химическое осаждение и мембранное разделение.

Энергетическая эффективность работы БГУ во многом зависит как от выбранной технологии, материалов и конструкции основных сооружений, так и от климатических условий в районе их расположения. Среднее потребление тепловой энергии на подогрев биореакторов в умеренном климатическом поясе равно 15-30% от энергии, вырабатываемой когенераторами (брутто).

Общая энергетическая эффективность биогазового комплекса с ТЭЦ на биогазе составляет в среднем 75-80%. В ситуации, когда всё тепло, получаемое от когенерационной станции при производстве электроэнергии невозможно потребить (распространённая ситуация из-за отсутствия внешних потребителей тепла), оно отводится в атмосферу. В таком случае, энергетическая эффективность биогазовой ТЭС составляет лишь 35% от общей энергии биогаза.

Основные показатели работы биогазовых установок могут существенно различаться, что во многом определяется применяемыми субстратами, принятым технологическим регламентом, эксплуатационной практикой, выполняемыми задачами каждой отдельной установки.

Процесс переработки навоза составляет не более 40 дней. Получаемый в результате переработки дигестат, не имеет запаха и является прекрасным органическим удобрением, в котором достигнута наибольшая степень минерализации питательных веществ, усваиваемых растениями.

Дигестат, как правило, разделяется на жидкую и твёрдую фракции с помощью шнековых сепараторов. Жидкую фракцию направляют в лагуны, где накапливают до периода внесения в почву. Твёрдая фракция также используется в качестве удобрения. Если применить к твёрдой фракции дополнительную сушку, грануляцию и упаковку, то она будет пригодна для длительного хранения и транспортировки на большие расстояния.

Производство и энергетическое использования биогаза имеет целый ряд обоснованных и подтверждённых мировой практикой преимуществ, а именно:

  1. Возобновляемый источник энергии (ВИЭ). Для производства биогаза используется возобновляемая биомасса.
  2. Широкий спектр используемого сырья для производства биогаза позволяет строить биогазовые установки фактически повсеместно в районах концентрации сельскохозяйственного производства и технологически связанных с ним отраслей промышленности.
  3. Универсальность способов энергетического использования биогаза как, для производства электрической и/или тепловой энергии по месту его образования, так и на любом объекте, подключённом к газотранспортной сети (в случае подачи очищенного биогаза в эту сеть), а также в качестве моторного топлива для автомобилей.
  4. Стабильность производства электроэнергии из биогаза в течение года позволяет покрывать пиковые нагрузки в сети, в том числе и в случае использования нестабильных ВИЭ, например, солнечных и ветровых электростанций.
  5. Создание рабочих мест за счёт формирования рыночной цепочки от поставщиков биомассы до эксплуатирующего персонала энергетических объектов.
  6. Снижение негативного воздействия на окружающую среду за счёт переработки и обезвреживания отходов путём контролированного сбраживания в биогазовых реакторах. Биогазовые технологии – один из основных и наиболее рациональных путей обезвреживания органических отходов. Проекты по производству биогаза позволяют сокращать выбросы парниковых газов в атмосферу.
  7. Агротехнический эффект от применения сброженной в биогазовых реакторах массы на сельскохозяйственных полях проявляется в улучшении структуры почв, регенерации и повышении их плодородия за счёт внесения питательных веществ органического происхождения. Развитие рынка органических удобрений, в том числе из переработанной в биогазовых реакторах массы, в перспективе будет способствовать развитию рынка экологически чистой продукции сельского хозяйства и повышению его конкурентоспособности.

Ориентировочные удельные инвестиционные затраты

БГУ 75 кВтэл. ~ 9.000 €/кВтэл.

БГУ 150 кВтэл. ~ 6.500 €/кВтэл.

БГУ 250 кВтэл. ~ 6.000 €/кВтэл.

БГУ bis 500 кВтэл. ~ 4.500 €/кВтэл.

БГУ 1 МВтэл. ~ 3.500 €/кВтэл.

Выработанная электрическая и тепловая энергия могут обеспечить не только потребности комплекса, но и прилегающей инфраструктуры. Причём сырьё для БГУ бесплатное, что обеспечивает высокую экономическую эффективность после завершения периода окупаемости (4-7 лет). Себестоимость вырабатываемой на БГУ энергии со временем не растёт, а напротив – уменьшается.